
Lecture Notes of the Algebra Group at Dokuz Eylül University De-
partment of Mathematics: Wedderburn-Artin Theorem (an extended
version)

Mistakes survive all corrections; nevertheless, point out if you run into one.

Theorem 1. The following conditions are equivalent for a ring R.

(i) RR is semisimple,
(ii) J(R) = 0 and R is right Artinian,
(iii) R is semiprime (i.e. R has no nonzero nilpotent ideals) and right Artinian,
(iv) R ∼=

∏n
i=1 Mn(Di), where Di are some division rings,

(v) Every right R-module is semisimple,
(vi) Every (simple) right R-module is projective,
(vii) Every right R-module is injective,
(viii) The left-hand-side versions of the above statements.

From a historical viewpoint one could say that the equivalence (i) ⇔ (ii) ⇔ (iv)
is the core of the theorem, and the rest is periphery. As we divide the proof
into several lemmas and propositions, we will also utilize the context to give some
background information about ring and module theory. Concepts recently defined
in class will be recalled as we go along.

Lemma 1. Let M be a module. If I is a family of simple submodules of M
such that M =

∑
B∈I B and A is a submodule of M , then there exists some I ′ ⊆ I

such that M = (
⊕

B∈I′ B)⊕A.

Sketch of Proof. As we have seen in class, the set of such sub-families Γ of I
as satisfy

∑
B∈Γ B + A = (

⊕
B∈Γ B)⊕ A is an inductive set (every chain in it has

an upper bound), so that, by Zorn’s Lemma, it has a maximal element say I ′. One
only needs to verify that if the sum (

⊕
B∈I′ B)⊕A were not equal to M , it would

have to have zero intersection with some C ∈ I, whence it would be easy to see that
the family I ′ ∪ {C} would contradict the maximality of I ′. Now, the conclusion
follows.

Definition 1. Given a moduleM we will call the sum of all simple submodules
of M the socle of M and denote it by soc(M).

Corollary 1. A module M is semisimple if and only if every submodule of
M is a direct summand of M , i.e. for any A ≤ M , there exists some H ≤ M such
that M = A⊕H.

Proof. (⇒) follows from Lemma 1. Assume, conversely, that every submodule
of M is a direct summand of M . Then soc(M) ⊕ B = M for some B ≤ M . If
B ̸= 0, then we can choose a nonzero cyclic submodule A of B. By Zorn’s Lemma,
A has a maximal submodule, say C. C is a direct summand of M by assumption.
So C ⊕ C ′ = M for some C ′ ≤ M . By modular law, A = C ⊕ (A ∩ C ′), so that
A
C

∼= A∩C ′ is a simple submodule of A, and hence of M , contradicting the fact that
(A∩C ′)∩soc(M) ⊆ B∩soc(M) = 0. This means that B = 0, so that M = soc(M)
is semisimple.

Lemma 2. If M is semisimple and A ≤ M , then A and M
A are semisimple.
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Proof. Every submodule of M is semisimple by Corollary 1 and modular law.
Furthermore, for any A ≤ M , there is some B ≤ M such that M = A ⊕ B (again
by Corollary 1), so that M

A
∼= B. Since B is semisimple, so is M

A
∼= B.

Question 1. Is the converse Lemma 2 true?

Definition 2. A free (right) module over a ring R is one that is isomorphic
to a direct sum of copies of RR. For example, RR itself is free, and so is R⊕R as
a right R-module.

Proposition 1. Every module is (isomorphic to) a factor of a free module.

Proof. Let M be a module and consider the map
⊕

m∈M RR → M defined
by the rule f((rm)m∈M ) =

∑
m∈M,rm ̸=0 mrm. It is routine to verify that f is an

epimorphism, proving our assertion.

Corollary 2. If RR is semisimple, then so is every right R-module.

Proof. The assertion immediately follows from Lemma 2 and Proposition 1.

Definition 3. A module M is said to be an injective module if, for any
monomorphism f : M → N , f(M) is a direct summand of N . For example,
QZ and the Prüfer group Zp∞ are injective Z-modules. Dually, M is called a pro-
jective module if the kernel of every epimorphism N → M is a direct summand of
N .

Corollary 3. RR is semisimple if and only if every right R-module is injective
if and only if every right module is projective.

Proof of the first equivalence. (⇒) If RR is semisimple then every right R-
module is semisimple by Corollary 2. Then, given any homomorphism f : M → N
between any two (right) modules M and N , f(M), being a submodule of N , is a
direct summand of N by Corollary 1.

(⇐) For any right ideal A of R, the inclusion map A → R splits by assumption,
i.e. its image A is a direct summand of RR. This implies by Corollary 1 that RR

is semisimple.

The proof for the second equivalence above is similar.

Question 2. Prove the following assertions:

(a) If f : A → B and g : B → C are two homomorphisms such that gf is an
isomorphism, then Im(f)⊕Ker(g) = B.

(b) f : M → N is a monomorphism and f(M) is a direct summand of N if
and only if there exists a homomorphism g : N → M such that gf = 1M .

(c) g : N → M is an epimorphism and Ker(g) is a direct summand of N if
and only if there exists a homomorphism f : M → N such that gf = 1M .

(d) If R is a ring then RR is projective.
(e) Direct sums and summands of projective modules are projective.
(f) Free modules are projective.
(g) If M is a projective module then it is isomorphic to a direct summand of

a free module.
(h) Conclude from the above assertions that projectives are up to isomorphism

precisely direct summands of free modules.
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Notice that we have thus far established the equivalences (i) ⇔ (v) ⇔ (vi) ⇔
(vii) of Theorem 1. The work in the sequel concerns the remaining and rather more
ring theoretic part of Theorem 1, some of which happens to still be susceptible of
a module theoretic approach; so we continue our discussion with the concept of a
radical of a module with a prospect of applying it in a ring theoretic setting. In
group theory, this corresponds to the Frattini subgroup. Recall that the Frattini
subgroup of a group G is precisely the subgroup generated by its non-generators.
We will prove the module theoretic version of this fact.

Definition 4. Given a module M we define the radical of M , denoted rad(M)
to be the intersection of all of its maximal submodules, if they do exist; in case they
do not, then rad(M) is defined to be M itself. A submodule A of M is said to be
a small submodule if, for any B ≤ M , A+B = M implies that B = M .

One can easily verify that any finite sum of small submodules of a module M
is again a small submodule, and that any small submodule of a submodule of M is
a small submodule of M .

Question 3. Let f : M → N be a module homomorphism, {Ai : i ∈ I} be
a family of submodules of M and {Bj : j ∈ J} be a family of submodules of N .
Prove the following statements:

(1) f(
∑

i∈I Ai) =
∑

i∈I f(Ai) and f−1(
∩

j∈J Bj) =
∩

j∈J f−1(Bj),

(2) f(
∩

i∈I Ai) ⊆
∩

i∈I f(Ai) and
∑

j∈J f−1(Bj) ⊆ f−1(
∑

j∈J Bj),

(3) In (2), the first equality holds if Ker(f) ⊆ Ai for all i ∈ I, and the second
one does if Bj ⊆ Im(f) for all j ∈ J .

Lemma 3. The following hold for any module M :

(i) rad(M) is the submodule of M generated by (i.e. is the sum of) the small
cyclic submodules of M (and thus contains all small submodules).

(ii) For any homomorphism f : M → N , f(A) is small in N whenever A is
small in M .

(iii) For any homomorphism f : M → N , f(rad(M)) ⊆ rad(N).

Proof. (i) Let A be a small submodule of M and N be a maximal submodule.
If A were not contained in N we would have N + A = M by maximality of N ,
contradicting the smallness of A. So any small submodule is contained in any
maximal submodule, whence rad(M) contains the sum of small submodules.

Conversely, assume A is a cyclic submodule of rad(M) that is not small. Then,
the set S of proper submodules of M whose sum with A is equal to M is a nonempty
set as well as an inductive one (how so?), so that S has a maximal element, say N .
We will see that N is actually a maximal submodule of M : Else, there would be
some C such that N ⊂ C ⊂ M . By maximality of N in S and since C + A = M ,
C must be a non-proper submodule, namely C = M , a contradiction. Thus, N
is a maximal submodule of M not containing A. This means that A * rad(M),
proving that cyclic submodules of rad(M) are small submodules of M , establishing
the reverse inclusion, as desired.

(ii) Let A be a small submodule ofM and assume that f(A)+B = N . Then, by
modular law, Im(f) = f(A)+(Im(f)∩B). By Question 3 (iii), M = f−1(f(A))+
f−1(Im(f)∩B) = A+Ker(f)+f−1(Im(f)∩B) = A+f−1(Im(f)∩B), implying,
by smallness of A, that M = f−1(Im(f) ∩ B). But then, Im(f) ⊆ B, whence
B = N , as desired.
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(i) follows from (i), (ii) and Question 3.

Question 4. Prove that if M is a finitely generated module then rad(M) is a
small submodule of M .

Corollary 4. For a ring R, rad(RR) and rad(RR) are ideals.

Proof. It suffices to verify that the former is a left ideal, the proof for the latter
will follow by symmetry: For any r ∈ R, r · rad(RR) is the image of rad(RR) under
the R-linear map R → R induced by left multiplication by r, whence r · rad(RR) ⊆
rad(RR) by Lemma 3.

Question 5. Prove that ifM is a right module over a ring R and J = rad(RR),
then MJ ⊆ rad(M).

Proposition 2. If M is an Artinian module with rad(M) = 0, then M is
semisimple.

Proof. Let A ≤ M . Since M is Artinian and A + M = M , one can choose a
submodule B of M minimal with respect to the property that A + B = M . Now
we claim that A∩B is a small submodule of B, whence of M : If (A∩B)+C = B,
then A+C = M . By minimality of B as chosen, C = B, proving the claim. Thus,
by assumption A ∩ B ⊆ rad(M) = 0, and consequently A ⊕ B = M . This shows
that any submodule of M is a direct summand of M , yielding that M is semisimple.

Remark that any semisimple module has zero radical.

Proposition 3. If R is a ring then

(i) rad(RR) is the largest right ideal I such that 1−a is (right) invertible for
each a ∈ I, and

(ii) rad(RR) = rad(RR).

Proof. (i) Since, for each a ∈ J , aR is a small right ideal of R and aR + (1 −
a)R = R, we have (1− a)R = R, so that (1− a) is right invertible, whence there is
some b ∈ R such that (1 − a)b = 1. Then 1 − b = −ab ∈ rad(RR), and the same
argument as above with a replaced by 1 − b yields that b is right invertible. So
bc = 1 for some c ∈ R. Then 1−a = (1−a)bc = c, making (1−a) invertible. Thus,
J satisfies the said property. Now assume that I is an ideal such that for any a ∈ I
1−a is right invertible. If a ∈ I and aR+B = R, then there exist r ∈ R and b ∈ B
such that 1 = ar+ b. By assumption, b = 1−ar is right invertible, so that bR = R,
whence B = R, proving that aR is a small right ideal, forcing aR ⊆ rad(RR) by
Lemma 3. Thus, I ⊆ rad(RR).

(ii) By (i) and Corollary 4, rad(RR) is a right ideal such that for every a ∈
rad(RR), 1− a is invertible, implying, again by (i), that rad(RR) ⊆ rad(RR). The
reverse inclusion follows by symmetry of our arguments.

Definition 5. For any ring R, rad(RR) = rad(RR) is called the Jacobson
radical of R. We will henceforth drop the notation rad for the radical of a ring and
just use J (or J(R) when the context necessitates the discernment of the ring R)
instead.

Proposition 4. If R is a right Artinian ring, then J is nilpotent and the ring
R = R

J is a semisimple right R-module.
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Proof. By assumption the chain J ⊇ J2 ⊇ J3... terminates, say, at the nth

step, i.e. Jn = Jn+1 = .... Assume, contrary to what we aim to prove, that Jn ̸= 0.
Then the set S = {I ≤ RR : IJn ̸= 0} contains J and is thus nonempty. Since R
is right Artinian S has a minimal element, say A. There is some a ∈ A such that
(aR)Jn = aJn = aJn+1 ̸= 0. By minimality of A we have A = aR = aJ = AJ .
But this is a contradiction since AJ ⊆ rad(A) which is small in A, by Questions 4
and 5. Thus, J is nilpotent.

The right R-module structure and the right R-module structure of the ring R
coincide, and RR is an Artinian module with zero radical. Thus, RR is semisimple
by Proposition 2, whence so too is RR.

Before the next lemma, remark that a semisimple module is finitely generated
iff it is Artinian iff it is Noetherian.

Lemma 4. Let R be ring with nilpotent Jacobson radical such that RR is

semisimple, where R = R
J . Then Noetherian modules and Artinian modules are

the same class.

Proof. Let M be Artinian or Noetherian, and assume Jn = 0. Then the factors
of the sequence M ⊇ MJ ⊇ MJ2 ⊇ .... ⊇ MJn = 0, being right R-modules,
are finitely generated semisimple (why?) both as right R-modules and as right

R-modules. So, for example, if M is Noetherian, then both MJn−1 and MJn−2

MJn−1

are Noetherian semisimple whence Artinian modules, implying that MJn−2 is Ar-
tinian. Continuing in this manner one eventually concludes that M is Artinian.
The proof that M being Artinian implies M being Noetherian is similar.

Proposition 4 and Lemma 4 immediately yield

Theorem 2. If R is a right Artinian ring then R is right Noetherian.

What is a counterexample to the converse of this theorem?
In linear algebra, a linear transformation on an n-dimensional vector space V

over a field F is identified with an n × n-matrix in a well-known way. In fact,
this identification defines an isomorphism from the ring of linear transformations
V → V to the ring Mn(F ). Looking from another point of view, such a vector
space is isomorphic to Fn, and the ring of its linear transformations is isomorphic
to Mn(End(FF )); this is because of the ring isomorphism End(FF ) ∼= F , which,
we know, holds for any ring. We can think similarly for a module over an arbitrary
ring, which is basically a vector space over that ring, and prove, in essentially the
same way, the following:

Lemma 5. If M ∼= An for a module A, then End(M) ∼= Mn(End(A)).

Question 6. Let M ∼= A ⊕ B, where Hom(A,B) = 0 and Hom(B,A) = 0.
Show that there is a ring isomorphism End(M) ∼= End(A)× End(B).

Definition 6. If M is a semisimple module, for each simple module S, we
define the S-component of M to be the sum of all simple submodules of M isomor-
phic to S. If M has a single nonzero S-component for a simple module S, we call
M a homogeneous semisimple module. An S-component is itself a homogeneous
semisimple module, and is alternatively called a homogeneous component of M .
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Question 7. Prove that any simple submodule of an S-component is isomor-
phic to S.

Question 8. Show that if R is a ring such that R = A ⊕ B where A and B
are ideals, then the following hold:

(1) A and B are cyclic R-modules each generated by a central idempotent.
(2) If A = eR for a central idempotent e of R, then A is a ring with identity e,

and right(/left) ideals of A are precisely right(/left) ideals of R contained
in A. Furthermore, if I is any right/left ideal of R, then I is the direct
sum (as an R-module) of a right(/left) ideal of A and a right(/left) ideal
of B.

(3) Right(/left) A-modules are precisely right(/left) R-modules annihilated
by B. Every right R-module M has a decomposition into the direct sum
of an A-module and a B-module.

Question 9. Prove that if M is a simple module then End(M) is a division
ring.

Question 10. Prove that a semisimple module is a direct sum of its homoge-
neous components.

Proposition 5. If RR is semisimple, then R is isomorphic to a finite product
of some matrix rings over division rings.

Proof. By Question 10, RR = H1 ⊕ ... ⊕ Hn, where Hi are homogeneous
components of RR. Assume, without loss of generality, that for each i ∈ {1, ..., n},
Hi ̸= 0 and is the Si-component of RR with respect to some simple right R-module
Si. Then, for i ̸= j, Hom(Hi,Hj) = 0. This implies that HjHi = 0, whence Hi are
ideals and the above decomposition is a ring direct sum (i.e. Hi are ideals). It is
easy to see that each Hi is a homogeneous semisimple right Hi-module. In fact, for
each i, there is an Hi-linear (as well as R-linear) isomorphism Hi

∼= Ski
i for some

ki. Then, by Question 6 and Lemma 5, we have R ∼= End(RR) ∼=
∏n

i=1 End(Hi) ∼=∏n
i=1 Mki(End(Si)). Since each End(Si) is a division ring by Question 9, the

conclusion follows.

Question 11. Let R be a ring. Prove that ideals of the matrix ring Mn(R)
are of the form Mn(I), where I are ideals of R. Also show that the assertion does
not hold for one-sided ideals.

Question 12. Let D be a division ring and R = Mn(D). Then R is a simple
ring, namely one that has no proper nonzero ideals, and the rows of R are simple
right ideals isomorphic to each other, so that RR is a homogeneous semisimple
right R-module. Similarly, the columns are simple left ideals all isomorphic to each
other, making RR a homogeneous semisimple left R-module.

Corollary 5. RR is semisimple if and only if RR is semisimple.

Proof. Assume that RR is semisimple. By Proposition 5, R is isomorphic, as a
ring, to a finite direct product of matrix rings Ri over division rings. By Question
12, each Ri is also semisimple as a left Ri-module, meaning that each Ri is a direct
sum of its simple left ideals. From the preceding statement, it is easy to see that
R, too, is a direct sum of simple left ideals, yielding the conclusion.
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Proof of Theorem 1: The equivalence of the conditions (i), (v), (vi), (vii)
were established as mentioned at the bottom of Page 2; (ii) ⇒ (i) follows from
Proposition 2, (i) ⇒ (iv) from Proposition 5, (iv) ⇒ (i) from Question 12, and the
equivalence of (viii) to the other conditions follows from Corollary 5. (i) ⇒ (ii)
follows from the remark preceding Lemma 4 and the fact that a semisimple module
has no small submodules other than the zero submodule. The equivalence of (iii)
to the other conditions is the subject of the next question.

Definition 7. A ring of theorem 1 is alternately called a semisimple Artinian
ring, a Wedderburn ring, or a simply a semisimple ring. The term ”semisimple” in
the phrase ”semisimple Artinian ring” refers to Jacobson semisimplicity (namely
the condition that J(R) = 0, and the sole use of it refers to R being semisimple as
a (right as well as a left) module over itself.

Question 13. Prove the following statements for a ring R:

(1) R is semiprime if and only if the intersection of all prime ideals of R is
zero.

(2) Prove that a maximal ideal is prime.
(3) Notice that from our discussion above, it follows that a semisimple Ar-

tinian ring is a sum of simple rings, and that a simple ring has only one
maximal ideal, namely the zero ideal.

(4) Prove that if R is semisimple Artinian, then R is semiprime.


