Minimal Generating Sets Of Modules

Mücahit Bozkurt, Manisa Celal Bayar University. Date: 9th of  October, 2024, Wednesday, Time: 13:30 – 14:30. Place: Dokuz Eylül Univ., Tınaztepe Campus, Faculty of Science, Department of Mathematics, Office B214 (Online-Sakai-Graduate Meetings).

Abstract:  For a right R-module M, a subset X of M is said to be a generating set of M if M=\sum_{x \in X}xR; and a minimal generating set of M is any generating set Y of M such that no proper subset of Y can generate M.

In this seminar, we present some basic results concerning minimal generating sets of modules.

References

  1. Ercolanoni, S., & Facchini, A. (2021). Projective covers over local rings. Annali di Matematica Pura ed Applicata (1923-)200(6), 2631-2644.
  2. Hrbek, M., & Růžička, P. (2017). Regularly weakly based modules over right perfect rings and Dedekind domains. Czechoslovak Mathematical Journal67, 367-377.
  3. Hrbek, M., & Růžička, P. (2014). Weakly based modules over Dedekind domains. Journal of Algebra399, 251-268.