Year: 2024
Computing eigenvalues of the discrete p-Laplacian via graph surgery
Matthias Hofmann, Texas A&M University Date: 16th February 2024, Friday Time: 13:00 Place: DEU, Faculty of Science, Department of Mathematics, Room B255
Abstract: We discuss the dependence of the eigenvalues and eigenfunctions for the discrete signed p-Laplacian under perturbation by a cut parameter. In particular, we prove a formula for the derivative of the eigenvalues and show that the eigenvalues of the discrete signed p-Laplacian on the original graph can be characterized via extremal points of the perturbed system. In this context, we elaborate on how graph surgery can be used in order to compute eigenvalues of the discrete (signed) p-Laplacian by looking at some examples. The derivation formula is reminiscent of the formula for linear eigenvalue problems given by the Hellmann-Feynman theorem and our results extend previous results for the linear case p=2 attained by [Berkolaiko, Anal. PDE 6 (2013), no. 5, 12131233].
AES Encryption Surrounds Us; We Surround AES Encryption
Orhun Kara, İzmir Institute of Technology . Date: 31th of January, 2024, Wednesday, Time: 10.30 – 12.00. Place: Dokuz Eylül Univ., Tınaztepe Campus, Faculty of Science, Department of Mathematics, Room B206 (Online-Sakai-Graduate Meetings).
Abstract:
The NIST Advanced Encryption Standard, AES, is without doubt the most used encryption algorithm all over the world. AES supplies confidentiality in almost all the ubiquitous cryptographic protocols including Whatsapp security, TLS, WPA. In this talk, we introduce algebraic aspects and the design philosophy of AES. Moreover, we try to convince the audience that AES appears sufficiently secure to protect our data by presenting supporting security evidence and introducing some unsuccessful attack attempts.