Leavitt Path Algebras

Tuğba Güroğlu, Celal Bayar University.
Date: 24th and 31st of May, and 7th of June, 2017, Wednesday, Time: 09:30 – 12:00.
Place: Dokuz Eylül Univ., Tınaztepe Campus, Faculty of Science, Department of Mathematics, Room B206.
Abstract: Let E denote a directed graph and K be a field. The Leavitt path algebra of E with coefficient in K, denoted by L_K(E), were introduced by G. Abrams and G. Aranda Pino in 2005 as a generalization of Leavitt algebras and then extended to arbitrary graphs in 2008. In this talk, we talk about Leavitt path algebras and determine Leavitt path algebras of some graphs. Then using graph-theoretic properties, we mention the some ring-theoretic properties of Leavitt path algebras.
[1] Abrams, G. and Aranda Pino, G., The Leavitt path algebra of a graph, J. Algebra, 293(2), 319-334, 2005.
[2] Abrams, G. and Aranda Pino, G., The Leavitt path algebras of arbitrary graphs, Houston J. Math., 34(2), 423-442, 2008.