Victor Blasco Jimenez, Dokuz Eylül Üniversitesi.
Tarih: 1 Mart, 2023, Çarşamba, Saat: 10.30 – 12.00.
Yer: Dokuz Eylül Üniv., Tınaztepe Yerleşkesi, Fen Fak. Matematik Böl. B206 nolu seminer/toplantı odası. (Online-Sakai-Graduate Meetings)
Özet: Abel grupların temel teoreminden elde ederiz ki, üzerine her sonlu uzunluktaki ayrıştırılamaz modül kendisinin bileşke çarpanları tarafından tek şekilde ifade edilir, bu da demektir ki, eğer ve sonlu ve eşit uzunluklu abel ayrıştırılamaz gruplar ise ve eğer , i\c{c}in her bileşke serisi varsa eşitligini elde ederiz, sonrasında olur. Bu konuşmalar serisinde, sonlu uzunluklu ayrıştırılamaz abel gruplar hakkında olan bu özellikle ilgili daha genel şekilde çalışacağız. İlk olarak bu özelliği sağlayan değişmeli halkaları üzerine yoğunlaşarak başlayacağız ve Dedekind böllgelerinin sınıflarını kapsadığını göstereceğiz. Zaman kalırsa, eğer bu koşulu, bu koşula diyeceğiz, sağlayan herhangi bir birimli halka ise (değişmeli olma koşulu yok) ve , halkasının bir ideali olmak üzere, da koşulunu sağlar. Bu çalışma, şu anda süregelen “Artin Cebirlerinin Temsil Teorisindeki Bazı Kategori Teori Metotları” isimli master tezimin bir parçasıdır.