Matlis Teoremi

Meltem Güllüsaç, Dokuz Eylül Üniversitesi.
Tarih: 20 Aralık, 2017, Çarşamba. Zaman: 09:30 – 12:00.
Yer: Dokuz Eylül Üniv., Tınaztepe Yerleşkesi, Fen Fak. Matematik Böl. B206 nolu seminer/toplantı odası.
Özet: Asal modüller, asal halkalar ve parçalanamaz injektiflerden bahsedip Matlis teoremini kanıtlayacağız. [1] kitabının üçüncü bölümüne bakınız.
Kaynaklar
[1] Lam, T. Y. Lectures on Modules and Rings. Springer, 1999.

Mininjektif Halkalar

Meltem Güllüsaç, Dokuz Eylül Üniversitesi.
Tarih: 22 ve 29 Kasım, 6 ve 13 Aralık, 2017, Çarşamba. Zaman: 09:30 – 12:00.
Yer: Dokuz Eylül Üniv., Tınaztepe Yerleşkesi, Fen Fak. Matematik Böl. B206 nolu seminer/toplantı odası.
Özet: Mininjektif halkalara giriş yapacağız. Nicholson ve Yousif ‘ın kitabının ikinci bölümüne bakınız.
Kaynaklar
[1] Nicholson, W.K. and Yousif, M.F. Quasi-Frobenius Rings. Cambridge University Press, 2003.

Quasi-Frobenius Halkalar

Noyan Er, Dokuz Eylül Üniversitesi.
Tarih: 25 Ekim, 1, 8 ve 15 Kasım, 2017, Çarşamba. Zaman: 09:30-12:00
Yer: Dokuz Eylül Üniv., Tınaztepe Yerleşkesi, Fen Fak. Matematik Böl. B206 nolu seminer/toplantı odası.
Özet: Bu seminer, QF-halkaları ve ilgili sorular hakkındaki seminer dizisinin ilk konuşması olacak.

Neredeyse Mükemmel Halkalar

Sinem Benli, İzmir Yüksek Teknoloji Enstitüsü.
Tarih: 18 Ekim 2017, Çarşamba. Zaman: 09:30-12:00
Yer: Dokuz Eylül Üniv., Tınaztepe Yerleşkesi, Fen Fak. Matematik Böl. B206 nolu seminer/toplantı odası.
Özet: Bu konuşmada, değişmeli neredeyse mükemmel tamlık bölgeleri ile ilgili kısa bir özet vereceğiz. Daha sonra, bu halka sınıfının Facchini ve Parolin tarafından yapılmış değişmeli olmayan halkalara genellemesinden bahsedeceğiz.
Kaynaklar:
[1] Facchini, A. and Parolin, C. Rings Whose Proper Factors are Right Perfect. Colloquium Mathematicae, 122, 191-202, 2011.
[2] Benli, S. Almost Perfect Rings. M.Sc. Thesis, Dokuz Eylül University, The Graduate School of Natural and Applied Sciences. İzmir/TURKEY, 2015.

Fakülte Yemek Bursu

Bu eğitim öğretim yılı boyunca üniversitemiz tarafından verilecek yemek bursu başvuruları başlamıştır. Yemek bursundan faydalanmak isteyen ihtiyaç sahibi öğrencilerimiz 11 Ekim 2017 çarşamba günü saat 17:00 ye kadar ofisime gelerek (B308) isimlerini yazdırabilirler.

İyi günler, iyi çalışmalar

Sabri Kaan Gürbüzer
Burs Komisyonu adına

Matematik Topluluğu Dönem Başlangıç Kahvaltısı

Merhaba arkadaşlar,

geleneksel dönem başlangıcı kahvaltı etkinliğimizi 07 Ekim 2017 Cumartesi günü saat 09:30 da Alsancak Kordon’da (Ordu evine civarında) “Public House” isimli kafe de gerçekleştiriyoruz. Etkinliğimize tüm bölüm arkadaşlarımız ve hocalarımız davetlidir.

Kafe’ye katılımcı sayımızı bildirmemiz gerekiyor. 05 Ekim Perşembe günü öğlene kadar topluluk yönetim ekibine isminizi yazdırıp ücretini teslim edebilirsiniz.

Periyodik Modüller Üzerine

Salahattin Özdemir, Dokuz Eylül Üniversitesi.
Tarih: 27 Eylül, 4 ve 11 Ekim, 2017, Çarşamba. Zaman: 09:30 – 12:00.
Yer: Dokuz Eylül Üniv., Tınaztepe Yerleşkesi, Fen Fak. Matematik Böl. B206 nolu seminer/toplantı odası.
Özet: Benson ve Goodearl ün herhangi bir R halkası üzerindeki düz modüller hakkındaki iyi bilinen sonucunu kanıtlayacağız: Eğer bir düz R-modülü M icin, P projektif modül olmak üzere 0MPM0 kısa bir tam dizi varsa, o zaman M projektiftir. Başka bir deyişle, her düz periyodik R-modülü M (periyodu 1) projektiftir. Daha sonra, bu sonucun son genellemelerinden bazıları hakkında konuşacağız.

Jacobson Yoğunluk Teoremi ve Uygulamaları

Sinem Benli, İzmir Yüksek Teknoloji Enstitüsü.
Tarih: 20 Eylül 2017, Çarşamba. Zaman: 09:30-12:00
Yer: Dokuz Eylül Üniv., Tınaztepe Yerleşkesi, Fen Fak. Matematik Böl. B206 nolu seminer/toplantı odası.
Özet: İlk olarak İlkel halkalar kavramını tanıtacağız. Bu halka sınıfı ile ilgili bazı örnekler verdikten ve bazı özelliklerinden bahsettikten sonra İlkel halkaların yapısını veren  Jacobson Yoğunluk teoremini kanıtlayacağız. Son olarak, sonlu boyutlu basit cebirleri karakterize eden Wedderbun Teoreminin farklı bir kanıtını verebiliriz.
Kaynaklar:
[1] Matej Brešar, Introduction to Noncommutative Algebra, Springer, 2014.
[2] Benson Farb & R. Keith Dennis, Noncommutative Algebra, Springer, 1991.

Skolem-Noether Teoremi ve Çifte Merkezleyen Teoremi

Skolem-Noether Teoremi ve Çifte Merkezleyen Teoremi
Meltem Güllüsaç ve Hikmet Burak Özcan, Dokuz Eylül Üniversitesi.
Tarih: 9, 16 ve 23 Ağustos ve 13 Eylül 2017, Çarşamba, Zaman: 09:30 – 12:00.
Yer: Dokuz Eylül Üniv., Tınaztepe Yerleşkesi, Fen Fak. Matematik Böl. B206 nolu seminer/toplantı odası.
Özet: Vektör uzaylarının tensör çarpımının ve cebirlerin tensör çarpımınının tekrarından sonra bir cisim üzerindeki sonlu-boyutlu merkezi basit cebirler için iki tane klasik sonucu kanıtlayacağız: Skolem-Noether Teoremi ve Çifte Merkezleyen Teoremi. Matej Bresar’ın kitabı [1]’den dördüncü bölüme bakınız. İlgilendiğimiz bütün cebirler bir cisim üzerindeki cebirlerdir. Bir cebirin çarpım cebiri kullanışlı bir araçtır, örneğin Brešar’ın sıfır çarpımla belirlenen cebirlerle ilgili sonuçlar da içeren [2] nolu makalesine bakınız. Sonlu bayutlu merkezi basit bir A cebiri üzerindeki her lineer operatörün A cebirinin çarpım cebirinde olması gerçeği Skolem-Noether teoreminin şu özel durumunu kanıtlamak için kullanılır: sonlu boyutlu merkezi basit bir cebirin bütün otomorfizmaları iç otomorfizmalardır. Aslında [2]’de A cebiri üzerinde xy=0 olan her durumda f(x)g(y)=0 şartını sağlayan f ve g lineer operatörleri için daha genel bir sonuç kanıtlanır. Brešar  ve diğerleri [3] nolu yeni çalışmalarında, birimli S cebirlerinden şu şartı sağlayan cebirleri inceliyorlar: sonlu boyutlu merkezi basit her R cebirinden R ve S cebirlerinin tensör çarpımı cebirine olan her homomorfizma, bu tensör çarpımı cebirinin bir iç otomorfizmasına genişletilebilir. Bu tür cebirlere Skolem-Noether cebirleri adını veriyorlar. Klasik Skolem-Noether Teoreminden, sonlu boyutlu merkezi basit her cebir, Skolem-Noether cebiridir ve bu çalışmalarında, yarı lokal (özel olarak artin veya sonlu-boyutlu) cebirleri, tek türlü çarpanlara ayrılma cebirleri, serbest cebirler gibi çeşitli klasik ve önemli cebir ailelerinin Skolem-Noether cebirleri olduğunu gösteriyorlar.
Kaynaklar
[1] Matej Brešar, Introduction to Noncommutative Algebras, Springer, 2014.
[2] Matej Brešar, Multiplication algebra and maps determined by zero products, Linear and Multilinear Algebra, 60:7, 763-768, 2012.
[3] Matej Brešar, Christoph Hanselka , Igor Klep and Jurij Volčič, Skolem-Noether Algebras, preprint, arXiv.org > math > arXiv:1706.08976, 2017.