Aslı Güçlükan İlhan, Dokuz Eylül Üniversitesi.
Tarih: 28 Şubat, 2018, Çarşamba. Zaman: 09:30 – 12:00.
Yer: Dokuz Eylül Üniv., Tınaztepe Yerleşkesi, Fen Fak. Matematik Böl. B206 nolu seminer/toplantı odası.
Özet: Bu konuşma serisinde, temel grubu tanımlayacağız ve temel grubun,
cebirin temel teoremi başta olmak üzere bazı uygulamalarından
bahsedeceğiz. Bu konuşmada, çemberin temel grubunu hesaplayıp, bu sonucun
bazı uygulamalarını vereceğiz. Ayrıca bir uzayın temel grubunu daha basit
uzaylarınkinden hesaplamamızı mümkün kılan van Kampen Teoremi’ni
tartışacağız. Son olarak her grubun bir uzayın temel grubu olarak
görülebileceğini ispatlayacağız.
Yıl: 2018
Temel Grup ve Bazı Uygulamaları, II
Aslı Güçlükan İlhan, Dokuz Eylül Üniversitesi.
Tarih: 21 Şubat, 2018, Çarşamba. Zaman: 09:30 – 12:00.
Yer: Dokuz Eylül Üniv., Tınaztepe Yerleşkesi, Fen Fak. Matematik Böl. B206 nolu seminer/toplantı odası.
Özet: Bu konuşma serisinde, temel grubu tanımlayacağız ve temel grubun,
cebirin temel teoremi başta olmak üzere bazı uygulamalarından
bahsedeceğiz. Bu konuşmada, çemberin temel grubunu hesaplayıp, bu sonucun
bazı uygulamalarını vereceğiz. Ayrıca bir uzayın temel grubunu daha basit
uzaylarınkinden hesaplamamızı mümkün kılan van Kampen Teoremi’ni
tartışacağız. Son olarak her grubun bir uzayın temel grubu olarak
görülebileceğini ispatlayacağız.
Değişmez Taban Özelliği ve Leavitt Yol Cebirinin Ideal Yapısı
Müge Kanuni, Düzce Üniversitesi.
Tarih: 14 Şubat, 2018, Çarşamba. Zaman: 09:30 – 12:00.
Yer: Dokuz Eylül Üniv., Tınaztepe Yerleşkesi, Fen Fak. Matematik Böl. B206 nolu seminer/toplantı odası.
Özet: Bir R halkasının Değişmez Taban Özelliği ya da kısaca IBN özelliği olması, iki farklı ranka sahip serbest R-modulünün izomorf olmamasıdır. W. G. Leavitt’in 1960’lı yıllarda ilgilendiği ve IBN özelliğine sahip olmayan cebir örnekleri ararken inşa ettiği cebirlere bugün Leavitt cebirleri diyoruz. IBN-olmayan R cebirinin tipinin (1,m) olması sol module olarak R‘nin kendisinin m-kopyasına izomorf olup, herhangi 1 < n < m için R‘nin n-kopyasına izomorf olmaması olarak tanımlanır. Leavitt yol cebiri ise yönlü bir çizge üzerinde inşa edilen bir cebirsel yapıdır. Bir köşesi ve m-buklesi olan yönlü çizge üzerindeki Leavitt yol cebiri tipi (1,m) olan Leavitt cebirine izomorfik olduğundan “Leavitt” ismini almıştır. Bunun yanında Leavitt yol cebirlerinin içinde IBN olan çok örnek vardır. Leavitt yol cebirlerinin IBN olup olmadığını tayin eden bir algoritmayı da konuşma sırasında vereceğiz. Ayrıca, Leavitt yol cebirinin ideal yapısıyla çizge üzerindeki köşe kümelerinin eşlemesinden bahsedeceğiz.
Temel Grup ve Bazı Uygulamaları
Aslı Güçlükan İlhan, Dokuz Eylül Üniversitesi.
Tarih: 7 Şubat, 2018, Çarşamba. Zaman: 09:30 – 12:00.
Yer: Dokuz Eylül Üniv., Tınaztepe Yerleşkesi, Fen Fak. Matematik Böl. B206 nolu seminer/toplantı odası.
Özet: Bu konuşma serisinde, temel grubu tanımlayacağız ve temel grubun,
cebirin temel teoremi başta olmak üzere bazı uygulamalarından
bahsedeceğiz. İlk konuşmada, cebirsel topolojinin ne olduğundan kısaca
bahsettikten sonra, temel grubun tanımını ve bazı özelliklerini vereceğiz.
Ayrıca tablo asma problemini tartışacağız.
Sonsuz Simetrik Grubun İndirgenemez Üniter Temsillerinin Sınıflandırılması
Cihan Sahillioğulları ve Sedef Taşkın, Dokuz Eylül Üniversitesi.
Tarih: 10 ve 17 Ocak, 2018, Çarşamba. Zaman: 09:30 – 12:00.
Yer: Dokuz Eylül Üniv., Tınaztepe Yerleşkesi, Fen Fak. Matematik Böl. B206 nolu seminer/toplantı odası.
Cihan Sahillioğulları’nın yapacağı ilk konuşma için özet:
Bu konuşmada, sonsuz simetrik grubun indirgenemez ehlil temsillerinin sınıflandırılması tanıtılacaktır. Öncelikle, çalışacağımız grup ifade edilecektir. Daha sonra Olshanski’s yarıgrubu ve sonsuz bisimetrik grubun küresel temsillerinden bahsedilecektir.
Sedef Taşkın’ın yapacağı ikinci konuşma için özet:
Bu konuşmada, sonsuz simetrik grubun üniter indirgenemez temsillerinin sınıflandırılmasına bir giriş yapılacaktır. İlk olarak sonsuz simetrik grup tanıtılacaktır. Daha sonra kıvrılmaya sahip yarı grupların temsillerinden bahsedeceğiz. Daha sonra, yarı grup temsillerini sonsuz simetrik grubun indirgenemez temsillerini sınıflandırmak için kullanacağız.